Neighborhood rough set and SVM based hybrid credit scoring classifier
نویسندگان
چکیده
The credit scoring model development has become a very important issue, as the credit industry is highly competitive. Therefore, considerable credit scoring models have been widely studied in the areas of statistics to improve the accuracy of credit scoring during the past few years. This study constructs a hybrid SVM-based credit scoring models to evaluate the applicant’s credit score according to the applicant’s input features: (1) using neighborhood rough set to select input features; (2) using grid search to optimize RBF kernel parameters; (3) using the hybrid optimal input features and model parameters to solve the credit scoring problem with 10-fold cross validation; (4) comparing the accuracy of the proposed method with other methods. Experiment results demonstrate that the neighborhood rough set and SVM based hybrid classifier has the best credit scoring capability compared with other hybrid classifiers. It also outperforms linear discriminant analysis, logistic regression and neural networks. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Credit scoring with a data mining approach based on support vector machines
The credit card industry has been growing rapidly recently, and thus huge numbers of consumers’ credit data are collected by the credit department of the bank. The credit scoring manager often evaluates the consumer’s credit with intuitive experience. However, with the support of the credit classification model, the manager can accurately evaluate the applicant’s credit score. Support Vector Ma...
متن کاملA Hybrid Approach to Credit Scoring Applying Rough Set and Genetic Programming
This paper applies a hybrid classification approach combining rough set and genetic programming (GP) to construct the credit scoring model. Comparing with the previous credit scoring model only based on GP, the hybrid method not only makes an improvement in the average classification accuracy, but also saves the required computational effort.
متن کاملCredit Scoring Based on Hybrid Data Mining Classification
The credit scoring has been regarded as a critical topic. This study proposed four approaches combining with the NN (Neural Network) classifier for features selection that retains sufficient information for classification purpose. Two UCI data sets and different approaches combined with NN classifier were constructed by selecting features. NN classifier combines with conventional statistical LD...
متن کاملAn Integrated Genetic-based Model of Naive Bayes Networks for Credit Scoring
Inappropriate management in some fields such as credit allocation has imposed too many losses to financial institutions and even has forced some of them to go bankrupt. Moreover, large volume data sets collected by credit departments has necessitated utilizing highly accurate models with less complexities. Credit scoring models with classification and forecasting customers into two groups good ...
متن کاملAn artificial immune classifier for credit scoring analysis
The primary concern of the rating policies for a banking industry is to develop a more objective, accurate and competitive scoring model to avoid losses from potential bad debt. This study proposes an artificial immune classifier based on the artificial immune network (named AINE-based classifier) to evaluate the applicants’ credit scores. Two experimental credit datasets are used to show the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011